Λεπτομέρειες προϊόντων
Πιστοποίηση: ISO9001,AS9100D,ISO13485,ISO45001,IATF16949,ISO14001,RoHS,CE etc.
Όροι πληρωμής & ναυτιλίας
Ποσότητα παραγγελίας min: 1 τεμ
Τιμή: $0.15-4.99
Χρόνος παράδοσης: 5-8 ημέρες
Όροι πληρωμής: L/C,D/A,D/P,T/T,Western Union,MoneyGram
Γράψτε με ταχύτητα: |
άνω των 10mb/s |
Διαδικασία: |
Στροφή, κατεργασία CNC |
Μεγαλύτερο μέγεθος άλεσης: |
Μεγαλύτερο μέγεθος άλεσης |
Μοντέλο σχήματος: |
Μέρη CNC |
Γρήγορος χρόνος παράδοσης: |
3-15 ΗΜΕΡΕΣ |
Ακραιότητα: |
RA0.4 |
Τύπος διεπαφής: |
USB 3.0 |
Υπηρεσία: |
Τεχνική επεξεργασία, επεξεργασία CNC |
deliveryTime: |
7-20 ημέρες ανάλογα με το μέγεθος της παραγγελίας |
Η υπηρεσία μας: |
Υπηρεσία ενός βήματος |
Υλικό: |
Ανοξείδωτος χάλυβας / Αλουμίνιο / Ορείχαλκος / Τιτάνιο / Πλαστικό |
Διαδικασία κατεργασίας: |
CNC στροφή/άλεση τόρνευσης |
Ελάχιστη ανοχή: |
+-0,15 χλστ |
Λέξη-κλειδί: |
Τμήματα αλουμινίου |
Τύπος διαθέσιμος: |
Τρίχωμα, στροφή, τρυπήματα κλπ. |
Γράψτε με ταχύτητα: |
άνω των 10mb/s |
Διαδικασία: |
Στροφή, κατεργασία CNC |
Μεγαλύτερο μέγεθος άλεσης: |
Μεγαλύτερο μέγεθος άλεσης |
Μοντέλο σχήματος: |
Μέρη CNC |
Γρήγορος χρόνος παράδοσης: |
3-15 ΗΜΕΡΕΣ |
Ακραιότητα: |
RA0.4 |
Τύπος διεπαφής: |
USB 3.0 |
Υπηρεσία: |
Τεχνική επεξεργασία, επεξεργασία CNC |
deliveryTime: |
7-20 ημέρες ανάλογα με το μέγεθος της παραγγελίας |
Η υπηρεσία μας: |
Υπηρεσία ενός βήματος |
Υλικό: |
Ανοξείδωτος χάλυβας / Αλουμίνιο / Ορείχαλκος / Τιτάνιο / Πλαστικό |
Διαδικασία κατεργασίας: |
CNC στροφή/άλεση τόρνευσης |
Ελάχιστη ανοχή: |
+-0,15 χλστ |
Λέξη-κλειδί: |
Τμήματα αλουμινίου |
Τύπος διαθέσιμος: |
Τρίχωμα, στροφή, τρυπήματα κλπ. |
The research follows a stepwise experimental layout to ensure full reproducibility. Each machining trial was performed using standardized toolpaths, identical tool geometry, and controlled environmental settings. Dimensional accuracy, surface roughness, and thermal variation were tracked throughout the process. Design considerations focused on three core elements: (a) stability of fixture systems under micro-deformation, (b) toolpath generation strategy, and (c) interaction between cutting speed and heat accumulation.
Data were collected from 240 machining samples produced across aluminum 6061-T6, stainless steel 304, and titanium Grade 5. Baseline geometry was measured using a calibrated CMM with 2 μm repeatability. Temperature data were monitored using embedded thermocouples placed near the cutting zone. All measurements were recorded automatically and stored in a unified dataset.
A five-axis CNC machining center (12,000 rpm spindle) was used to run controlled tests. Surface-quality analysis relied on white-light interferometry. Statistical evaluation employed linear mixed-effect models to isolate material-related variance. The experimental setup allows complete replication, enabling independent verification of results.
Table 1 summarizes the tolerance results for three process strategies.
Table 1 Tolerance deviation across machining strategies
(Three-line table format applied)
| Process Strategy | Mean Deviation (μm) | Standard Deviation (μm) |
|---|---|---|
| Fixed-feed milling | 42 | 11 |
| Adaptive-feed milling | 34 | 9 |
| Hybrid multi-axis milling | 29 | 7 |
Adaptive feed control reduced deviation by 18%, while hybrid multi-axis processing achieved the highest stability across materials. Titanium samples showed the largest heat-driven deformation, with maximum temperature rise reaching 46°C, approximately twice that of aluminum.
Published research on multi-axis workflows often highlights efficiency improvements, yet few provide material-specific thermal drift measurements. The present results show consistent patterns aligning with earlier thermal-model predictions, but the new quantified relationship between toolpath orientation and heat conduction offers a clearer mechanism explaining the accuracy improvements.
Two innovations are supported by measurable evidence:
Both innovations emerge from controlled data rather than subjective interpretation.
Tolerance deviation is strongly affected by dynamic cutting-force variation. Adaptive-feed milling smooths these fluctuations, resulting in more consistent geometry. Toolpath orientation also modifies heat dissipation paths. Titanium’s low thermal conductivity drives higher thermal gradients, while aluminum distributes heat more evenly—explaining the differing deformation profiles.
The experiments were carried out in a temperature-controlled workshop, which may differ from real-factory conditions where humidity, ambient temperature, or machine wear can alter performance. Only three materials were studied, limiting the generality of the conclusions.
Factories producing aerospace, medical, and robotics components can apply these findings to stabilize high-precision batches. Adjusting fixing strategy and toolpath direction according to each alloy’s thermal behavior offers a feasible route to improving repeatability without significant equipment upgrades.
This study establishes a reproducible methodology for assessing machining strategies across common engineering alloys. Data indicate that adaptive feed control and optimized multi-axis toolpaths significantly reduce tolerance drift. Understanding material-specific heat-transfer characteristics further enhances dimensional stability. These insights support more predictable manufacturing outcomes and provide a foundation for expanding research into automated toolpath generation and real-time spindle-load feedback systems.